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Abstract The structural, mechanical, electronic, and optical
properties of orthorhombic Bi2S3 and Bi2Se3 compounds have
been investigated by means of first principles calculations.
The calculated lattice parameters and internal coordinates are
in very good agreement with the experimental findings. The
elastic constants are obtained, then the secondary results such
as bulk modulus, shear modulus, Young’s modulus, Poisson’s
ratio, anisotropy factor, and Debye temperature of polycrys-
talline aggregates are derived, and the relevant mechanical
properties are also discussed. Furthermore, the band structures
and optical properties such as real and imaginary parts of
dielectric functions, energy-loss function, the effective num-
ber of valance electrons, and the effective optical dielectric
constant have been computed. We also calculated some non-
linearities for Bi2S3 and Bi2Se3 (tensors of elasto-optical co-
efficients) under pressure.

Keywords Band structure . Bi2S3 . Bi2Se3 . Elastic
constants . Mechanical properties . Optical properties

Introduction

Topological insulators are materials that have a bulk band gap
similar to commonly known insulators, but have conducting
states on their edge or surface. The bulk band gap is generated
because of the strong spin-orbit coupling inherent to these
system, which also modified them in a fundamental way, lead-
ing to unconventional spin polarized Dirac fermions on the
boundary of the insulator [1–3]. The single Dirac cone surface
state on these compounds constitutes the simple manifestation
of 2D and 3 D topological insulators. Many of the interesting
theoretical proposals that utilize topological insulator surfaces
require the chemical binding potential to lie at or near the
surface Dirac point, and consequently bulk doping is commonly
used to tune the chemical potential to the Dirac point [3, 4].

Recent theoretical and experimental progress in this area
has demonstrated the existence of a novel class of bulk insu-
lators with conducting states on their boundaries or surfaces
[1–4]. Over the past few years the topological states of Bi2X3
(X=Te,Se, S), the “second generation” topological insulators,
has become the focus of intense research. Motivated by their
application potential (photovoltaic, thermoelectric, X-ray
computed tomography, electrochemical hydrogen storage
etc.)[5–9] the binary compounds Bi2X3 are the most studied.
These compounds with the space group Pnma – D2h16 have
four molecules (20 atoms) in a unit cell and have tetradymite-
like layered structure with ionic-covalent bounded quintuple
layer slabs. The earlier reported band gap of bulk Bi2S3 is
1.3 eV [10]. The most recent value of the band gap is reported
to be in the range 1.3 – 1.7 eV [11], which lies in the visible
solar energy spectrum [12, 13]. It has a large absorption
coefficient. Bi2X3 compounds have been widely used in TV
cameras with photoconducting targets, thermoelectric devices,
micro- and optoelectronic devices, and IR spectroscopy
[14–22]. Also, Bi2X3 compounds have been shown to be
ideal candidates for studying room temperature topological
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insulating behavior as they have the topologically non-trivial
band gap [3], much larger than the room temperature energy
scale [3]. Therefore, Bi2X3 compounds are considered to be a
promising topological system toward unique applications in
next generation electronics [3].

In the past, the structural and electronic properties of these
compounds were analyzed in detail by different authors
[23–28]. The valance electron density, electron band structure,
and corresponding electronic density-of-states (DOS) of X2Y3

(X = Bi, Sb and Y = S, Se) compounds using the density
functional theory were studied by Caracas et al. [23]. Sharma
et al. [24] computed the energy band, density of states and
optical properties of orthorhombic Bi2S3 and rhombohedral
Bi2Se3 using the gradient approximation (GGA) in the frame
density functional theory. Sharma et al. [25] investigated the
structural, electronic and optical properties of the trigonal and
orthorhombic phases of Bi2Se3 using the density functional
theory based on full-potential linearized augmented plane
wave (LAPW) + local orbitals (lo). Olsen et al. [26] provided
an analysis of the electronic structure using SIESTADFTcode
calculations for Cu4Bi5S10 and Bi2S3. Filip et al. [27] investi-
gated the quasiparticle structural properties, band structures,
and band gaps using the first principles GWand LDA approx-
imations. Zhao et al. [28] predicted a series of Raman-active
photon modes using a first principle calculation for the vibra-
tional modes of Bi2S3.

To our knowledge, the mechanical properties, optical prop-
erties except for the real and imaginary parts of dielectric
functions, and elasto-optical coefficients under pressure have
not been reported in detail for Bi2S3 and Bi2Se3 so far. In this
context, the mechanical properties and optical properties such
as the effective number of valance electrons and the effective
optical dielectric constant, and elasto-optical coefficients un-
der pressure of these compounds are the first required data for
any eventual applications of the material in topological insu-
lators. Also, the features of the spectrum with degeneracy of
the symmetric points of the Brillouin zone were discussed for
crystalline three-dimensional → two dimensional, two-
dimensional → one-dimensional, and pure two-dimensional
systems [29]. Conical features of the spectrum were detected
in three–dimensional → two-dimensional systems (hetere
bound arises between V-VI semiconductors with band inver-
sion) [30]. A question arises of whether conical features exist
in crystalline systems like topological insulators with a higher
degree of degeneracy. Therefore, in the present paper we also
discussed the states with the conic dispersion law and with
more than twofold degeneracy in Bi2X3.

Methods

Simulations of Bi2S3 and Bi2Se3 compounds were conducted,
using two different quantum mechanical (QM) DFT

programs. The first, freely accessible code, SIESTA combines
norm conserving pseudopotentials with the local basis func-
tions. First principles calculations within the general frame-
work of the density functional theory of the system on the
molecular basis set based on the finite range pseudoatomic
orbitals (PAOs) of the Sankey_Niklewsky type [31], general-
ized to include multiple-zeta decays were performed. The
calculations of the total energies and atomic forces are done
in a linear combination of atomic orbitals according to the
standard procedures of SIESTA [32, 33]. In the calculation,
the local density approximation (LDA) [34] for the exchange-
correlation [35, 36] energy was used. The basis set used in the
present study was double-zeta plus polarization. Siesta calcu-
lates the self-consistent potential on a grid in real space. The
fineness of this grid is determined in terms of an energy cut-off
Ec in analogy to the energy cut-off when the basis set involves
plane waves. We found an optimal value of around 375 Ry
between 100 and 450 Ry cut-off energies with various basis
sets for Bi2S3 and Bi2Se3; 256 k-points for Bi2S3 and Bi2Se3
were enough to obtain the converged total energies.

The interactions between electrons and core ions are sim-
ulated with separable Troullier-Martins [37] norm-conserving
pseudopotentials. We have generated atomic pseudopotentials
separately for atoms Bi, S, and Se by using the 6s26p3, 3s23p4,
and 4s24p4 configurations, respectively. For present atomic
pseudopotentials, the cut-off radii are taken as s: 1.60 au, p:
1.73 au, 1.90 au for the d and f channels of S, s: 1.91 au, p:
2.10 au, d: 1.91 au f: 2.44 of Se and s: 3.82 au, p: 2.71 au, 2.92
au for the d and f channels of Bi.

The second, commercially available (VASP) [38–41], code
employs plane wave basis functions. The calculations per-
formed with this code and reported here also use the LDA.
The electron-ion interaction was considered in the form of the
projector-augmented-wave (PAW) method with a plane wave
up to an energy of 450 eV [41, 42]. This cut-off was found to
be adequate for studying the structural and elastic properties.
The 8x11x8 Monkhorst and Pack [43]grid of k-points have
been used for these compounds.

Results and discussion

Structural properties

The structures of Bi2S3 and Bi2Se3 are considered as an
orthorhombic structure. These crystals have four Bi2X3 (X =
S, Se) molecules (20 atoms) in unit cell. The positions corre-
sponding to the orthorhombic Bi2S3 and Bi2Se3 have been
obtained from experimental data [23, 44, 45]. The calculated
atomic positions are given in Table 1. For SIESTA calcula-
tions, the equilibrium lattice parameters, bulk modulus, and its
pressure derivative were obtained by minimizing the total
energy for the different values of the lattice parameters by
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means of Murnaghan’s equation of states (EOS) [46]. For the
VASP calculations, the cell volume and ionic positions of
atoms in reciprocal coordinates for the considered compounds
were fully relaxed. The results for the SIESTA and VASP
calculations are shown in Table 2 along with the experimental
and theoretical values. The obtained lattice parameters using
both the code for Bi2S3 and Bi2Se3 are in good agreement with
the experimental and theoretical values.We confirmed that the
calculated results are similar between the VASP and SIESTA
calculations. In the SIESTA code, the calculated bulk moduli
for Bi2S3 and Bi2Se3 are 78.82 and 70.70 GPa, respectively.

Elastic properties

The elastic constant Cij of solids provides a link between the
mechanical and dynamical behavior of crystals, and some of
the more important information that can be obtained from
ground state total energy calculations. The Cij determine the
response of the crystal to external forces characterized by the
bulk modulus, Young’s modulus, shear modulus, and
Poisson’s ratio and, therefore, play an important part in deter-
mining the stability and stiffness of the materials [47, 48].

The present elastic constants are computed by using the
“volume-conserving” technique [49] and the strain–stress re-
lationship [50] for SIESTA and VASP calculations, respec-
tively. The obtained Cij for SIESTA and VASP calculations
are summarized in Table 3. The elastic constant values of
SIESTA are, generally, in accordance with the elastic constant
values of VASP. Unfortunately, there are no theoretical results
for comparing them with the present work. However, our
results can serve as a prediction for future investigations.

The mechanical stability criteria for orthorhombic struc-
tures are given in ref. [51]. The present elastic constants in
Table 3 obey these stability conditions for orthorhombic Bi2S3
and Bi2Se3. The elastic constants C11, C22, and C33 measure
the a-, b-, and c-direction resistance to linear compression,
respectively. The C11 for SIESTA calculations is lower than
the C22 and C33 while the C33 for VASP calculations of Bi2S3
is lower than the C11 and C22. The calculated C33 of both
codes for Bi2Se3 are lower than the C11 and C22. Thus, Bi2S3
compound is more compressible along the a-axis and c-axis
for SIESTA and VASP calculations, respectively, while the
Bi2Se3 compound is more compressible along the c-axis for
SIESTA and VASP calculations.

It is known that, the elastic constant C44 is the most impor-
tant parameter indirectly governing the indentation hardness
of a material. The large C44 means a strong ability to resist the
monoclinic shear distortion in (100) plane, and the elastic
constant C66 relates to the resistance to shear in the <110>
direction. In the present case, C44, C55, and C66 for both codes
of Bi2Se3 are lower than the Bi2S3 compound.

There are two approximation methods to calculate the
polycrystalline modulus, namely, the Voigt method [52] and

the Reuss method [53]. Using the common relations [54, 55],
the Hill average [56] was used to calculate the polycrystalline
modulus in a manner similar to our recent works [57, 58].
Table 4 shows the calculated bulk modulus, shear modulus,
Young’s modulus, and Poisson’s ratio. The bulk modulus is a
measure of resistance to volume change by an applied pres-
sure, whereas the shear modulus is a measure of resistance to
reversible deformations upon shear stress [59]. Hence, shear
modulus exhibits better correlations with hardness than the
bulk modulus. The calculated shear modulus and bulk modu-
lus for SIESTA (VASP) are 43.2 (45.2), 67.8 (83.6) GPa and
39.4 (39.0), 65.7 (71.9) GPa for Bi2S3 and Bi2Se3, respective-
ly. The values of the bulk moduli indicate that Bi2S3 is a less
compressible material than the Bi2Se3 compound. The calcu-
lated shear modulus for Bi2Se3 is lower than Bi2S3 compound.
The calculated bulk moduli using elastic constants are lower
(about 7.51 % and 3.67 %, respectively) than the other bulk
moduli (67.8 and 65.7 for Bi2S3 and Bi2Se3, respectively)
using EOS.

The criterion in refs. [59, 60] for ductility or brittleness is
the value of the B/G. If the B/G ratio is higher (less) than, 1.75,
then a material is ductile (brittle). The B/G ratio calculated for
SIESTA is lower than 1.75 while the B/G ratio calculated for
VASP is higher than 1.75 for both compounds. Hence, both
compounds behave in a brittle (ductile) manner for SIESTA
(VASP). Therefore, further study is necessary to solve the
discrepancy.

Young’s modulus, which is defined as the ratio of stress and
strain is used to provide for the measurement of the stiffness of
the solid. The higher the value of Young’s modulus, the stiffer
the materials is. Here, the value of Young’s modulus
(106.9 GPa for SIESTA and 114.8 GPa for VASP) of the
Bi2S3 compound is higher than Bi2Se3 (98.5 GPa for SIESTA
and 99.0 GPa for VASP). Therefore, the Bi2S3 compound is
relatively stiffer than Bi2Se3. If the value of E, which has an
impact on the ductile, increases, then covalent nature of the
material also increases. In Table 4, it is shown that E increases
as you move from Bi2Se3 to Bi2S3.

The value of Poisson’s ratio is indicative of the degree of
directionality of the covalent bonds. The value of the
Poisson’s ratio is small (υ =0.1) for covalent materials, where-
as for ionic materials a typical value of υ is 0.25 [61]. The
calculated Poisson’s ratios of SIESTA and VASP are approx.
0.24, 0.27 and 0.25, 0.27 for Bi2S3 and Bi2Se3, respectively.
Therefore, the ionic contribution to inter atomic bonding for
these compounds is dominant. The υ=0.25 and 0.5 are the
lower and upper limits, respectively, for central force solids
[62]. For Bi2S3 and Bi2Se3, the values of υ are close to 0.25,
indicating that interatomic forces are weightless central forces.

In the crystal structures, elastic anisotropy is important in
understanding the elastic properties [63]. The shear anisotrop-
ic factors on different crystallographic planes provide a mea-
sure of the degree of anisotropy in atomic bonding in different
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planes. The shear anisotropic factors for the {100}, {010},
and {001} shear planes are given by A1=4C44/(C11+C33−
2C13), A2=4C55/(C22+C33−2C23), and A3=4C66/(C11+C22−
2C12). The calculated A1, A2 and A3 of both codes for Bi2S3
and Bi2Se3 are given in Table 5. A value of unity means that
the crystal exhibits isotropic properties while values other than
unity represent varying degrees of anisotropy. From Table 5, it
can be seen that Bi2S3 and Bi2Se3 exhibit larger anisotropy in
the {100} and {010} shear planes. For polycrystalline, we
also calculate the percentage of anisotropy defined as [61, 62,
64]AB=(BV−BR)/(BV+BR) and AG=(GV−GR)/(GV+GR) in the
compression and shear, respectively.

For an isotropic crystal, these values can range from zero
(isotropic) to 100% representing the maximum anisotropy. AB
and AG values for Bi2S3 and Bi2Se3 have been computed, and
results are listed in Table 5. It can also be seen that the

anisotropy in compression is small and the anisotropy in shear
is high. Bi2S3 compound in SIESTA code exhibits relatively
high shear and bulk anisotropies compared with the Bi2Se3
compound. The results obtained with VASP code are the exact
opposite of the results obtained from SIESTA code. Hence,
further study is necessary to solve the discrepancy.

One of the standard methods for calculating the Debye
temperature is to use elastic constant data since θD [65] may
be estimated from the average sound velocity (vm). At low
temperatures, we have calculated the sound velocities and the
Debye temperature by using the common relation given in
refs. [66, 67] for Bi2S3 and Bi2Se3, and the results are listed in
Table 6 along with the calculated values of density.

For materials, it is usually the case that the higher the
Debye temperature is the higher microhardness will be. As
can be seen in Table 6, the Debye temperature for Bi2S3 is

Table 2 The calculated equilibrium lattice parameters (a, b, and c), bulk modulus (B), and the pressure derivative of bulk modulus (B′) together with the
theoretical and experimental values for Bi2S3 and Bi2Se3

Material Reference a (Å) b (Å) c (Å) B (GPa) B′

Bi2S3 Present (SIESTA) 11.314 3.980 11.014 78.82 4.37

Present (VASP) 10.999 3.940 10.825

Theory (QUANTUM ESPRESSO) a 11.227 3.999 11.001

Theory (QUANTUM ESPRESSO)b 10.950 3.974 11.103

Experimentalc 11.305 3.981 11.147

Bi2Se3 Present (SIESTA) 11.763 4.106 11.476 70.70 4.75

Present (VASP) 11.505 4.079 11.302

Theory (QUANTUM ESPRESSO) a 11.767 4.141 11.491

Experimentald 11.830 4.090 11.620

a Ref [27]
b Ref [28]
c Ref [44]
d Ref [45]

Table 1 The calculated internal coordinates together with experimental value

Space group: Pnma—orthorhombic Experimental [23, 44, 45] Present-SIESTA Present-VASP

Atomic positions

Atom Wyckoff x y z x y z x y z

Bi1 4c 0.517 0.25 0.175 0.503 0.24 0.175 0.502 0.25 0.176

Bi2 4c 0.660 0.75 0.466 0.660 0.76 0.459 0.672 0.75 0.472

S1 4c 0.623 0.75 0.058 0.619 0.76 0.059 0.623 0.75 0.056

S2 4c 0.715 0.25 0.306 0.712 0.24 0.299 0.721 0.25 0.301

S3 4c 0.451 0.75 0.373 0.446 0.76 0.363 0.447 0.75 0.369

Bi1 4c 0.512 0.25 0.172 0.502 0.25 0.173 0.502 0.25 0.172

Bi2 4c 0.657 0.75 0.466 0.664 0.75 0.469 0.664 0.75 0.464

Se1 4c 0.630 0.75 0.056 0.627 0.75 0.055 0.627 0.75 0.056

Se2 4c 0.713 0.25 0.307 0.721 0.25 0.299 0.721 0.25 0.299

Se3 4c 0.433 0.75 0.376 0.444 0.75 0.367 0.445 0.75 0.367
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higher than that for Bi2Se3. The Debye temperatures obtained
with VASP code are compatible with that obtained from
SIESTA code.

Electronic properties

The investigation of the electronic band structure for
understanding the electronic and optical properties of
Bi2S3 and Bi2Se3 is very useful. The band structures
of the orthorhombic Bi2S3 and Bi2Se3 in the SIESTA
code are calculated using LDA approximation. The
electronic band structures were calculated along the
special lines connecting the high-symmetry points S
(½,½,0), Y (0,½,0), Γ (0,0,0), X (½,0,0), S(½,½,0), R
(½,½,½) for Bi2S3 and Bi2Se3 in the k-space. The
energy band structures calculated for Bi2S3 and Bi2Se3
are shown in Fig. 1. As can be seen in Fig. 1a, the
Bi2S3 compound has an indirect band gap semicon-
ductor with the value 1.32 eV (see Table 7). The top
of the valance band is positioned near the X point
between Γ and X point of BZ, and the bottom of the
conduction band is located at the Γ point of BZ. The
band gap value obtained for Bi2S3 is less than some
of the estimated experimental and theoretical results
and the band gap has the same character as given in
ref. [68, 69]. The present band and the density of
states (DOS) profiles for Bi2S3 agree with the earlier
work [24].

It can be seen from Fig. 1b that the band gap of
Bi2Se3 compound has the same character as that of
Bi2S3. The top of the valance band and the bottom
of the conduction band are located near the Γ point
between Y and Γ point of BZ, and near the X point
between the Γ and X point of BZ, respectively. The
indirect band gap value of Bi2Se3 compound is 0.95
eV (see Table 7). The band gap value obtained for
Bi2Se3 is bigger than the estimated theoretical results.

Unfortunately, there are no experimental results to
compare with the calculated band gap value.

The total and partial densities of states correspond-
ing to the band structures of Bi2S3 and Bi2Se3 are
calculated and the results are indicated in Figs. 2 and
3 along with the Fermi energy level, respectively. In
these figures, the lowest valence bands that occur
between approximately -15 and -12 eV are dominated
by S 3s and Se 4s states while the valence bands that
occur between approximately -12 and -8 eV are domi-
nated by Bi 6s states. The highest occupied valance
bands are essentially dominated by S 3p and Se 4p
states. The 6p states of Bi atoms also contribute to the
valance bands, but the values of the densities of these
states are rather small compared to S 3p and Se 4p
states. The lowest unoccupied conduction bands just
above Fermi energy level is dominated by Bi 6p. The
3p (4p) states of S (Se) atoms also contribute to the
conduction bands, but the values of densities of these
states are rather small compared to Bi 6p states.

The band structures of Bi2S3 and Bi2Se3 crystals
were compared because the band structures of these
crystals highly resemble one another. Thus, on the
formation of the band structures (it seems to us) of
Bi2S3 and Bi2Se3 the 6s 6p orbitals of Bi atoms are
more dominant than the 3s3p and 4s4p orbitals of S
and Se atoms.

It is well known that interband contributions to ε can
be accurately fitted to a single-oscillator Sellmeier ex-
pression for which reliable refractive-index dispersion
data are available. For an arbitrary light-polarization
direction, the wavelength dependence of ε is given
closely by the relation: [73]

ε−1 ¼ S0 λ0

� �2
= 1− λ0=λ

� �2h i
ð1Þ

Table 3 The calculated elastic
constants (in GPa) for Bi2S3 and
Bi2Se3

Material Reference C11 C22 C33 C12 C13 C23 C44 C55 C66

Bi2S3 Present (SIESTA) 93.8 135.5 108.7 33.3 50.9 56.5 69.8 57.7 37.8

Present (VASP) 132.7 140.2 123.3 47.1 62.4 69.3 69.3 55.8 39.4

Bi2Se3 Present (SIESTA) 110.9 107.6 96.1 38.4 48.1 51.8 62.4 51.2 35.9

Present (VASP) 116.7 115.4 107.8 39.2 54.6 60.4 60.9 49.0 33.9

Table 4 The calculated isotropic
bulk modulus (B, in GPa), shear
modulus (G, in GPa), Young’s
modulus (E, in GPa), and
Poisson’s ratio for Bi2S3 and
Bi2Se3 compounds

Material Reference B G E υ G/B B/G

Bi2S3 Present (SIESTA) 67.8 43.2 106.9 0.2372 0.637 1.569

Present (VASP) 83.6 45.2 114.8 0.2709 0.540 1.849

Bi2Se3 Present (SIESTA) 65.7 39.4 98.5 0.2501 0.599 1.668

Present (VASP) 71.9 39.0 99.0 0.2703 0.542 1.843
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Here, λ is the light wavelength and S0 and λ0 are oscillator
strength and position parameters, respectively. The interband
energy (ε0=hc/eλ0) and interband strength [F=(hc/e)2S0] pa-
rameters are physically meaningful (h is Planck’s constant, c is
the speed of light, and e is the electronic charge). Using these
parameters we can define a “dispersion energy” εd given by
εd=F/ε0=(hc/e)S0λ0 and all the other Sellmeier parameters for
Bi2S3 and Bi2Se3 (“dispersion energy” determines the disper-
sion of the electronic dielectric constant in nonmetallic non-
magnetic solids). The dispersion energies of Bi2S3 and Bi2Se3
compounds along the x, y, and z axes are 14.65 eV, 18.82 eV,
18.18 eV and 22.09 eV, 26.37 eV, 27.32 eV, respectively.

We also calculated the influence of external pressure
on the electronic band structure and the band gap of
Bi2S3 and Bi2Se3 (Fig. 4). It is well known that the
influence of pressure on Eg for most materials in a wide
pressure range is linear (Eg=Eg(0)+AP+….). Our cal-
culations show that A= 0.64x10−2eV/GPa (Bi2S3) and
1.58x10−2eV/GPa (Bi2Se3) for direct optical transition in
the Г-high symmetry point. For all other high symmetry
points we observed results that were very close to it.

Optical properties

The significant point in linear and non-linear optics is
that when the electromagnetic field becomes strong
enough, the dielectric function becomes on the electric
field vector, E (ω) or polarization per unit volume P
(ω). We can calculate this polarization as [74]:

P i ωð Þ ¼ χ 1ð Þ
ij ::E j ωð Þ þ χ 2ð Þ

ijk :E
j ωð Þ:Ek ωð Þ þ… ð2Þ

where χ(1) is the linear optical susceptibility tensor, and
χ(2) is the lowest order nonlinearity second susceptibil-
ity that is important in non-linear materials with no
center of inversion. The other high order nonlinear
susceptibilities come into play for non-linear effects in
cubic crystals with a center of inversion for which the
first order terms vanishes by symmetry. For the present
calculations and discussion we will only consider the
linear and lowest order nonlinear terms.

Now in order to find the linear and nonlinear susceptibility
polarization operator P (Eq. 2) can be written as

Ph i ¼ Ph i
I
þ Ph i

II
þ… ð3Þ

Table 5 The calculated shear anisotropic factors A1, A2, A3, and AB, AG

Material Reference A1 A2 A3 AB (%) AG (%)

Bi2S3 Present (SIESTA) 2.77 1.76 0.93 1.52 6.38

Present (VASP) 2.11 1.79 0.88 0.10 4.82

Bi2Se3 Present (SIESTA) 2.25 2.05 1.02 0.01 5.79

Present (VASP) 2.11 1.92 0.88 0.12 5.36

Table 6 The density, longitudi-
nal, transverse, and average elas-
tic wave velocities together with
the Debye temperature for Bi2S3
and Bi2Se3

Material Reference ρ (g/cm3) v| (m/s) vt (m/s) vm (m/s) θD(K)

Bi2S3 Present (SIESTA) 6.88 4267 2504 2775 283.3

Present (VASP) 7.28 4446 2492 2774 288.4

Bi2Se3 Present (SIESTA) 7.84 3882 2241 2488 244.8

Present (VASP) 8.19 3888 2181 2427 242.3

Fig. 1 Energy band structure for a) Bi2S3 and b) Bi2Se3
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where

Pi
� �

I
¼ χ 1ð Þ

ij −ωβ;ωβ

� �
e−iωβtE j ωβ

� � ð4Þ

Pi
� �

II ¼ χ 2ð Þ
ijk −ωβ;−ωγ;ωβ;ωγ

� �
e−i ωβþωγð ÞtE j ωβ

� �
Ek ωγ

� �
ð5Þ

and we get the expression for the linear susceptibility [70]

χ 1ð Þ
ij −ω;ωð Þ ¼ e2

ℏΩ

X
nm k
!

f nm k
!� �rinm k

!� �
rimn k

!� �

ωmn k
!� �

−ω
¼ εij ωð Þ−δij

4π
ð6Þ

where n,m denote energy bands, f mn k
!� �

≡ f m k
!� �

− f n k
!� �

is the Fermi occupation
factor, Ω is the normalization volume.

ωmn k
!� �

≡ωm k
!� �

−ω k
!� �

are the frequency differences,

ℏωn k
!� �

is the energy of band n at wave vector k.

The r!nm are the matrix elements of the position operator
given as follows [75].

!rnm ¼
Vnm !k

� �

iωnm !k þ!K
� �;ωn≠ωm

!rnm ¼ 0 ;ωn ¼ ωm

ð7Þ

where Vnm k
!� �

¼ m−1pnm k
!� �

;m is the free electron mass,

and pnm k
!� �

is the momentum matrix element. Similarly, we
get the expression for the second order susceptibility [75]:

χ 2ð Þ
ijk −ωβ;−ωγ ;ωβ;ωγ

� � ¼ χ IIð Þ
ijk −ωβ;−ωγ;ωβ;ωγ

� �

þ η IIð Þ
ijk −ωβ;−ωγ;ωβ;ωγ

� �þ iσ IIð Þ
ijk −ωβ;−ωγ;ωβ;ωγ

� �
ωβ þ ωγ

� � ð8Þ

Table 7 The calculated energy band gap with SIESTA

Material Reference Eg (eV)

Bi2S3 Present 1.32 indirect

Experimentala 1.28 indirect

Experimentalb 1.43 indirect

Experimentalc 1.30 direct

Experimentald 1.58 direct

Experimentale 1.67 direct

Theoryf (DFT-GGA and FP-LAPW) 1.45 and 1.32

Theoryg (DFT-LDA and GW) 1.12 and 1.42 direct

Theoryh (DFT-LDA) 1.47

Theoryı (FP-LAPW) 1.24

Bi2Se3 Present 0.95 indirect

Theoryh (DFT-LDA) 0.90

Theoryg (DFT-LDA and GW) 0.83 and 0.91 direct

a Ref [68]
b Ref [69]
c Ref [70]
d Ref [71]
e Ref [72]
f Ref [24]
g Ref [27]
h Ref [23]
ıRef [22]

Fig. 2 The total and projected density of states for Bi2S3
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that includes contributions of interband and intraband transi-
tions to the second order susceptibility.

As can be seen from Eq. (6), the dielectric function εij(ω)=
1+4πχij

(1)(−ω,ω) and the imaginary part of εij(ω),ε2
ij(ω), is

given by

εij2 wð Þ2 ¼ e2

ℏ π

X
nm

Z
d k
!

f nm k
!� �vinm k

!� �
v jnm k

!� �
ω2
mn

δ ω−ωmn k
!� �� �

: ð9Þ

The real part of the dielectric function εij(ω),ε1
ij(ω), can be

calculated from Eq. (9) by using the Kramers-Kroning rela-
tions [75]. Because the Kohn-Sham equations determine the
ground state properties, the unoccupied conduction bands as
calculated have no physical significance. If they are used as
single-particle states in the calculation of optical properties for
semiconductors, a band gap problem comes into play in
calculations of response. In order to take into account self-
energy effects, in the present work, we used the ‘scissors
approximation’ [74, 76].

The sum rules [77] for the finite interval of integration in
terms of Neff (an effective number of the valence electrons
contributing to the optical properties in the same energy range):

Neff Eð Þ ¼ 2mε0
πℏ2e2Na

Z
0

E0

ε2 Eð ÞEdE; ð10Þ

whereNa is the density of atoms in a crystal, e andm are the
charge and mass of the electron, respectively.

Similarly, the effective dielectric function εeff, produced by
an interband and low-lying transition (core and semi-core
bands) in the same range may be written by using the same
rules as

εeff Eð Þ−1 ¼ 2

π

Z
0

E0

ε2 Eð ÞE−1dE: ð11Þ

The physical meaning of εeff may be understood from the
fact that ε2 describes the real optical transitions plots of the
effective optical dielectric constant εeff versus energy and,
therefore, it is possible to estimate which transitions make
the most important contribution to the static dielectric constant
in the energy range from zero to E0, i.e., by the polarization of
the electron shells.

In order to calculate the optical response by using the
calculated band structure, we have chosen a photon-energy
range of 0-25eV and have seen that a 0-17eV photon-energy
range is sufficient for most optical functions.

The Bi2S3 and Bi2Se3 single crystals have an ortho-
rhombic structure that is optically a biaxial system. For
this reason, the linear dielectric tensor of the Bi2S3 and
Bi2Se3 compounds has three independent components

Fig. 3 The total and projected density of states for Bi2Se3

Fig. 4 The pressure variations of energy band gaps (Eg) in the Γ-high
symmetry point for Bi2S3 and Bi2Se3
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that are the diagonal elements of the linear dielectric
tensor.

We first calculated the real and imaginary parts of
the linear dielectric function of the Bi2X3 compounds
along the x- and z-directions (Figs. 5 and 6). All the
Bi2X3 compounds studied so far have ε1

x(ε1
z) equal to

zero in the energy region between 4eV and 20eV for
decreasing (dε1/dE<0) and increasing (dε1/dE>0) of
ε1(eV) (see, Table 8). Also, values of ε1 versus pho-
ton energy have main peaks in the energy region
between 0.5eV and 9eV. Some of the principal fea-
tures and singularities of the εij for both investigated
compounds are shown in Table 8. As we can see from
Figs. 5 and 6, ε1

x behaves mainly as a classical oscil-
lator. In addition, by analogy with Bi2X3, one can
associate the peaks of the ε2

x and ε2
z with the transi-

tions between the state Г15, which is thought to be
the highest valence band state at the endpoint of the
Г-directions in the Brillouin zone, and the state Г21,
the lowest conduction band state for the same wave
vector. The imaginary part of the dielectric function
has strong peaks for Bi2S3 and Bi2Se3 in the energy
region between 2eV and 4eV (see Table 8). The opti-
cal properties of Bi2X3 vary somewhat from com-
pound to compound and from direction to direction,
but show similar features for both materials because
the electronic configurations of Se ([Ar],3d10 4 s2

4p2) and S([Ne], 3 s2 3p3) are very close to each
other. In general, there are various contributions to

the dielectric function, but Figs. 5 and 6 show only
the contribution of the electronic polarizability to the
dielectric function. The maximum peak values of ε2

x

and ε2
z are in agreement with maximum peak values

of the theoretical results for Bi2S3 [26]. In the range
between 2 eV and 5 eV, ε1

z decrease with increasing
photon-energy, which is characteristic of an anoma-
lous dispersion. In this energy range, the transitions
between occupied and unoccupied states mainly occur
between S 3p and Se 4p states which can be seen in
the DOS displayed in Figs. 2 and 3. Furthermore, as
can be seen from Figs. 5 and 6, the photon–energy
range up to 1.5eV is characterized by high transpar-
ency, no absorption, and a small reflectivity. The 1.8-
5.0eV photon energy range is characterized by strong
absorption and appreciable reflectivity. The absorption
band extending beyond 10eV up to 15eV is associated
with the transitions from the low-lying valance
subband to the conduction band. Second, we see that
above 10eV, corresponding to the S 3s (Se 4s) and Bi
6p. In addition, we remark that the region above 15eV
cannot be interpreted in terms of classical oscillators.
Above 15eV ε1 and ε2 are dominated by linear fea-
tures, increasing for ε1 and decreasing for ε2.

The corresponding energy-loss functions, L(ω), are
also presented in Figs. 5 and 6. In this figure, Lx and
Lz correspond to the energy-loss functions along the x-
and z-directions. The function L(ω) describes the energy
loss of fast electrons traversing the material. The sharp

Fig. 5 Energy spectra of
dielectric function ε=ε1−iε2 and
energy-loss function (L) along the
x- and z-axes for Bi2S3

Fig. 6 Energy spectra of
dielectric function ε=ε1−iε2 and
energy-loss function (L) along the
x- and z-axes for Bi2Se3
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maxima in the energy-loss function are associated with
the existence of plasma oscillations [78]. The curves of
Lx and Lz in Figs. 5 and 6 have a maximum near 19.29
and 19.04 eV for Bi2S3, respectively, and 18.74 and
19.18 eV for Bi2Se3, respectively.

The calculated effective number of valence electrons
Neff and the effective dielectric constant εeff are given
in Fig. 7. The effective optical dielectric constant, εeff,
shown in Fig. 7, reaches a saturation value at approx.
8 eV. The photon-energy dependence of εeff shows us a
rapid rise that extends up to 5 eV. Then the value of
εeff rises more smoothly and slowly and tends to sat-
urate at the energy 8 eV. This means that the greatest
contribution to εeff arises from interband transitions
between 1 eV and 5 eV.

As stated above, the Neff determined from the sum
rule (Eq. 9) is the effective number of valance electrons
per unit cell at the energy ℏω0 (under the condition that
all of the interband transitions possible at this frequency
ω0 were made). In the case of Bi2S3 and Bi2Se3 the
value of Neff increases with increasing photon energy
and has a tendency to saturate near 8 eV and 20 eV (see
Fig. 7). Therefore, each of our plots of Neff versus the

photon energy for Bi2S3 and Bi2Se3 can be arbitrarily
divided into two parts. The first is characterized by a
rapid growth of Neff up to ∼6 eV and extended to 9 eV.
The second part shows a smoother and slower growth
of Neff and tends to saturate at energies above 30 eV. It
is therefore, rather difficult to choose independent
criteria for the estimate of the valance electrons per unit
cell. Recognizing that the two valance subbands are
separated from each other and are also separated from
the low-lying states of the valance band, we can assume
a tendency to saturation at energies such that the tran-
sition from the corresponding subbands are exhausted.
In other words, since Neff is determined only by the
behavior of ε2 and is the total oscillator strengths, the
sections of the Neff curves with the maximum slope,
which correspond to the maxima dNeff/dℏω, can be used
to discern the appearance of a new absorption mecha-
nism with increasing energy (E=5.2 eV, 8.6 eV for
Bi2S3 and E=5.0 eV, 9 eV for Bi2Se3). The values and
behavior of Neff and εeff for both directions are very
close to each other.

By using our results from “Elastic properties” and “Optical
properties” we also calculated elasto-optic tensors for Bi2S3

Table 8 Some of the principal
features and singularities of the
linear optical responses for Bi2S3
and Bi2Se3

Material ε1(eV) dε1/dE<0 dε1/dE>0 ε2(eV)

Bi2S3 ε1
x 4.05 4.35 8.93 4.20 8.09 19.36 ε2,max

x 2.72

ε1
z 3.31 – 9.40 7.61 – 19.08 ε2,max

z 2.65

Bi2Se3 ε1
x 2.78 – 9.71 7.63 – 18.68 ε2,max

x 2.05

ε1
z 2.70 – 9.51 7.51 – 18.84 ε2,max

z 2.08

Fig. 7 Energy spectra of Neff and
εeff along the x- and z- axes
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and Bi2Se3. It is well known that in order to describe the
elasto-optic effect we must use the usual definition and relate
optical impermeability-κ (inverse dielectric constant) to strain
tensor Cij via a fourth-rank elasto-optic p tensor in order to
describe the elasto-optic effect. The impermeability change is
then given in terms of the elasto-optic p coefficients and
electro-optic f coefficients by the expression

Δ
1

n2

� 	
ij

¼
X
k;l

pijkl
pCkl þ

X
k

f ijk
CPk ; ð12Þ

where the superscripts C and P denote that these coefficients
are measured at constant strain and constant polarization,
respectively [73].

The elasto optic coefficients form a fourth rank tensor p
defined by the equation:

pijkl ¼ ∂κij=∂Skl ð13Þ

where S is the strain tensor. In their common principal
coordinate system, the diagonal elements of the permittivity
and impermittivity tensors are direct reciprocals. Hence,

∂κ=∂yð Þij ¼ ∂=∂y
� �

ε−1
� �

ij ¼ − 1=εiiεjj
� �

∂εji=∂y
� �

; ð14Þ

where y is any independent variable. Although the off-
diagonal elements are zero, by definition, in the principal
coordinate system, their derivatives with respect to an inde-
pendent variable need not be zero. The symmetry of ortho-
rhombic allows only 12 independent elasto-optic coefficients
[79]. In the reduced index notation, the elasto-optic matrix for
orthorhombic Bi2S3 and Bi2Se3 compounds are:

P ¼

p11 p12 p13 0 0 0
p21 p22 p23 0 0 0
p31 p32 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66

2
6666664

3
7777775

ð15Þ

with the nonzero elements. Thus, for components involving
diagonal strain elements, only diagonal permittivity elements
need to be considered. A typical elasto-optic coefficient is

pijkl ¼ ∂κij=∂Skl ¼ − 1=εiiεjj
� �

∂εij=∂Skl
� � ð16Þ

that we calculated by using results from “Elastic properties”
and “Optical properties” and Eqs. 15 and 16. The results are

shown below.

PBi2S3 ¼

0:43 0:96 −0:73 0 0 0
0:96 0:32 0:90 0 0 0
−0:73 0:90 0:36 0 0 0
0 0 0 0:57 0 0
0 0 0 0 0:51 0
0 0 0 0 0 0:92

2
6666664

3
7777775

ð17Þ

PBi2Se3 ¼

0:23 0:47 −0:39 0 0 0
0:47 0:28 0:27 0 0 0
−0:39 0:27 0:29 0 0 0
0 0 0 0:23 0 0
0 0 0 0 0:18 0
0 0 0 0 0 0:39

2
6666664

3
7777775

ð18Þ

Conclusions

We studied the structural, electronic, mechanical, and optical
properties of the Bi2S3 and Bi2Se3 compounds using first
principle DFT methods. The calculated lattice parameters
and internal coordinates are in agreement with the experimen-
tal results. The elastic constants were obtained using the
“volume-conserving” technique and strain–stress relationship.
The results indicate that these compounds are mechanically
stable. Due to the higher value of Young’s modulus, the Bi2S3
compound is relatively stiffer than Bi2Se3. In addition, the
calculated bulk modulus, shear modulus, Debye temperature,
and wave velocity for Bi2S3 are higher than Bi2Se3. Moreover,
both compounds for SIESTA calculations are classified as
being brittle, and for VASP calculations are classified as being
ductile. The ionic contribution to inter atomic bonding for
these compounds is dominant. We have revealed that the band
structures of these compounds are a semiconductor in nature.
We have examined the photon-energy dependent dielectric
functions, some optical properties such as the energy-loss
function, the effective number of valance electrons, the effec-
tive optical dielectric constant along the x- and z- axes and
elasto-optical coefficients under pressure.
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